

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Inovace bakalářského studijního oboru Aplikovaná chemie

Reg. č.: CZ.1.07/2.2.00/15.0247

pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Introduction to Physical Chemistry

Lecture 5

- Thermodynamics
 - thermodynamic systems, processes and states
 - state variables
 - mechanical work of gas
 - adiabatic process

EVROPSKÁ UNIE

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Lecture vocabulary:

mechanical work of gas	mechanická práce plynu		
certain	určitý		
region	oblast		
universe	vesmír		
notional	hypotetický, teoretický		
delimiting	wmezující		
surroundings	okolí		
environment	okolí, prostředí		
reservoir	rezervoár, tepelná lázeň		
experimentally accessible	experimentálně dostupný		
internal energy	vnitřní energie		
displace	zaujmout místo		
force field	silové pole		
solely	výhradně, jedině		
mass flow	tok hmoty		
reversible x irreversible	vratný x nevratný		
sign	znaménko		
sign convention	znaménková konvence		
expansion	expanze, rozpínání		
compression	komprese, stlačení		
external	vnější		
at the expense	na účet, na úkor (čeho)		
work obtained	získaná práce		
shaft work	shaft=hřídel, jiné označení pro mechanickou práci plynu		
cylinder	válec		
diminish	snížit se		
net	celkový		
thermally insulated	tepelně izolovaný		
heat exchange	výměna tepla		
steeper	strmější		
denoted as	označován jako		
stoichiometric	stechiometrický		
equilibrium	rovnováha		
intake	sání		
combustion	spalování, hoření		
exhaust	výfuk		

* * * * * * * * * EVROPSKÁ UNIE

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

system surroundings

Thermodynamic systems, states and processes

Thermodynamic system is a certain macroscopic region of universe
Thermodynamic system is separated by real or notional boundary delimiting the system volume
The space outside the thermodynamic system is known as the surroundings, the environment, or a reservoir.

The state of the system is characterised by a set of thermodynamic parameters the values of which are experimentally accessible macroscopic properties, such as volume, pressure, temperature, electric field etc.

System type	Mass flow	Work	Heat
Open	YES	YES	YES
Closed	NO	YES	YES
Isolated	NO	NO	NO

Processes:

Isobaric · Isochoric · Isothermal Adiabatic · Isoentropic · Isoenthalpic Quasistatic · Polytropic

Reversible vs. irreversible

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

State variables

State variables – those which are independent from pathway. In a thermodynamic system, temperature, pressure, volume, internal energy, enthalpy, and entropy are state variables.

For this lecture, *internal energy* of the gas is the most important state variable

It is the energy needed to create the system, but excludes the energy to displace the system's surroundings, any energy associated with a move as a whole, or due to external force fields. Internal energy has two major components, kinetic energy and potential energy.

For ideal gas, it depends solely on temperature (but not on the volume of the gas):

$$dU = nC_V dT$$

Believe it for now, will be explained in the next lecture

Processes during which shaft work is done can be divided into:

•irreversible • •reversible

constant external pressure

external pressure is always slightly lower than is the pressure inside the cylinder

Mechanical work of gas – reversibility

As the number of steps increases, the overal process becomes less irreversible; that is, the difference between the work done in expansion and that required to re-compress the gas diminishes.

or

MINISTERSTVO ŠKC MLÁDEŽE A TĚLOVÝCHOV

INV DO VZD

 $\frac{dp}{p}$

Adiabatic process

Is a thermodynamic process in which there is no net heat transfer to or from the working gas. Adiabatic process is said to occur when:

•the container of the system has thermally-insulated walls

•there is no opportunity for significant heat exchange (the process occurs in a short time) can be reversible or irreversible

Reversible adiabatic process

$$\frac{dU = -p_{external}}{p_{external}} dV$$

$$\frac{dU = -p_{external}}{p_{external}} dV$$

$$\frac{nRT = pV \Rightarrow}{\Rightarrow nRdT = d(pV) = Vdp + pdV}$$

$$\Rightarrow nRdT = d(pV) = Vdp + pdV$$

$$\Rightarrow nRdT = d(pV) = Vdp + pdV$$

$$\frac{nc_V \frac{pdV + Vdp}{nR} = -p_{ext}}{p} = -p_{ext} dV$$
For reversible process p_{ext}=p
and we can rearrange:
$$\frac{dp}{p} = -\frac{(c_V + R)}{c_V} \frac{dV}{V} = -\frac{c_p}{c_V} \frac{p}{V}$$
After integration
we get Poisson eq.
$$\ln \frac{p}{p_1} = \frac{c_p}{c_V} \ln \frac{V_1}{V} \Rightarrow pV^{\kappa} = p_1V_1^{\kappa}$$

$$\left(\kappa = \frac{c_p}{c_V}\right)$$

pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ante

a logic ser

Adiabatic process

Siméon Denis Poisson (1781-1840)


```
MINISTERSTVO ŠKOLSTVÍ,
MLÁDEŽE A TĚLOVÝCHOVY
```


INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Adiabatic process

Work is done at the expense of the internal energy of gas. We can calculate it if we know both initial and final temperatures:

$$-W = -\Delta U = \int_{T_1}^{T_2} nC_v dT = nC_v (T_2 - T_1)$$

Alternatively, to calculate reversible work, we can integrate the Poisson eq.:

$$-dW = pdV$$

$$-W = \int_{V_1}^{V_2} pdV = p_1 V_1^{\kappa} \int_{V_1}^{V_2} \frac{1}{V^{\kappa}} dV$$

Real processes are something in between isothermal and adiabatic, they are denoted as *polytropic*

$$-W = \frac{p_1 V_1^{\kappa}}{-\kappa + 1} \left(V_2^{-\kappa + 1} - V_1^{-\kappa + 1} \right)$$

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Adiabatic flame temperature

the theoretical temperature of the combustion if no energy is lost to the outside environment

- Constant volume
- Constant pressure

the combustion of an organic compound with n carbons involves breaking roughly

- 2n C–H bonds,
- n C–C bonds, and
- 1.5n O₂ bonds to form roughly
- n CO₂ molecules and
- n H2O molecules.

•AFT is maximum for stoichiometric fueloxidizer mixture

•asssumes equilibrium – AFT can be exceeded in nonequilibrium conditions

$$\Delta H = \int_{T_1}^{T_2} \sum_i v_i C_{p_i}(prod.) dT$$

Fuel	Oxidizer	Tad (°C)
Acetylene (C2H2)	air	2500
Acetylene (C2H2)	Oxygen	3480
Butane (C4H10)	air	1970
Cyanogen (C2N2)	Oxygen	4525
Dicyanoacetylene (C4N2)	Oxygen	4990
Ethane (C2H6)	air	1955
Hydrogen (H2)	air	2210
Hydrogen (H2)	Oxygen	3200
Methane (CH4)	air	1950
Natural gas	air	1960
Propane (C3H8)	air	1980
Propane (C3H8)	Oxygen	2526
MAPP gas Methylacetylene (C3H4)	air	2010
MAPP gas Methylacetylene (C3H4)	Oxygen	2927
Wood	air	1980
Kerosene	air	2093
Light fuel oil	air	2100
Medium fuel oil	air	2100
Heavy fuel oil	air	2100
Bituminous Coal	air	2170
Anthracite	air	2180
Anthracite	Oxygen	2900

Constant pressure adiabatic flame temp.

**** * * **** EVROPSKÁ UNIE

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Internal combustion engine

Four-stroke cycle (Otto Cycle)

- Intake stroke
 Compression stroke.
 Combustion stroke
- Exhaust stroke

OP Vzdělávání pro konkurenceschopnost

> INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

